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A simple two-point closure scheme for homogeneous axisymmetric turbulence is 
developed. For the isotropic case it is essentially an eddy-viscosity assumption in real 
space for the Karman-Howarth equation. The eddy-viscosity function for large 
internal Reynolds numbers is derived from Kolmogoroffs 1941 theory. For 
moderate Reynold’s numbers of order lo2, approximately the same expression for the 
eddy-viscosity function is determined from experimental data. The resulting closed 
equation for the double-correlation function is solved numerically for both large and 
moderate Reynolds numbers, and the results are compared with experimental data. 
Self-similar solutions of the basic equation predict turbulent energy decay inversely 
proportional to time. It is shown that the departure from this ‘initial-period decay 
law ’ observed in laboratory data is due to the behaviour of grid-produced correlation 
functions for large separation distances. 

1. Introduction 
The fundamental problem in the theory of turbulence is closure of equations 

describing the time evolution of different correlation functions of the turbulent field. 
A variety of closure schemes are described, for example, by Batchelor (1953), Hinze 
(1959), Monin & Yaglom (1971, 1975) and Rose & Sulem (1978). For isotropic 
turbulence, eddy-viscosity assumptions have been formulated in spectral space, and 
a survey of different possible assumptions may be .found in Monin & Yaglom (1975). 
Much less attention has been directed to the formulation of eddy-viscosity concepts 
in real space coordinates. The paper by Hasselmann (1958) is, apparently, an 
exception. I n  the present paper we introduce a simple closure scheme for homogeneous 
axisymmetric turbulence which for the isotropic case is equivalent to an eddy-viscosity 
assumption in real space for the Karman-Howarth equation. The exact form of the 
eddy-viscosity function is derived in $ 3  from Kolmogoroffs 1941 theory and from 
experimental data. The postulated closure relation between double- and triple- 
correlation functions seems to be much less dependent on Reynolds number than the 
correlation functions themselves. I n  $4 the theory is compared with experimental 
data for both high and moderate Reynolds numbers. Finally, in $5 the model is used 
to investigate the problem of the decay of turbulence, and we arrive a t  the conclusion 
that the energy decay rate is related to the behaviour of the correlation functions 
for large separation distances ; specifically, an energy -decay rate inversely proportional 
to time, known as the initial-period decay law, requires that the initial double- 
correlation function behave as l / r 2  for large distances r .  This result agrees with 
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spectral results (Orszag 1977 ; Lesieur & Schertzer 1978)) which yield the initial-period 
decay law, assuming that the energy spectrum is linear in wavenumber k in the 
vicinity of k = 0. Laboratory data do not generally satisfy this condition and 
therefore depart from the initial-period decay law. Section 6 is devoted to the 
discussion of these results. 

2. The closure assumption 

satisfies the Navier-Stokes and continuity equations 
Consider an incompressible fluid of constant density p. The velocity field Ui(x ,  t )  

a a l a  a 2  
- ui + u, - ui = at ax, Paxi ax,ax, 

a - u, = 0. 
ax, 

P+ v- ui, 

Here P and v are the pressure and the kinematic viscosity respectively. Repeated 
lower indices imply summation. Velocity and pressure are decomposed into mean and 
turbulent parts 

P a )  

( 2 b )  

U ( ( X ,  t )  = Q(X, t )  + u,(x, t ) ,  

P ( X ,  t )  = P ( X ,  t )  +p@, t ) ,  

where the overbar denotes the average value. I n  what follows, we assume that the 
turbulent field is homogeneous and axisymmetric, i.e. two-point characteristics of 
turbulence depend only on a vector connecting these points and are invariant for 
rotations about preferred direction and for reflections in planes parallel and perpen- 
dicular to the axis of symmetry. 

Equation ( 1 )  and the decomposition ( 2 )  in a homogeneous case leads to the 
following equations (Hinze 1959) : 

a -  a -  a, Ri, + R . - Ui( rA , t )  + R .  - U.(  rB, t )  + [ u,( rB, t )  - ua( rA , t ) ]  a, Ri, 
a,i ae “‘“ar,B 

1 
P 

= - a,(s,, aj - s,,, i) + - (ai K P ,  - aj  K,, p )  + 2v a, a, R,, (3 c )  

( 3 6  e , f )  a, Ra3 = 0, a, xij, , = 0, a, K ~ ,  i+ = 0. 

In  the above equations rA and rB are positions of two arbitrary points A and B 
within the fluid, whereas r = rA-rB and the operator a, E a/&-,. Furthermore we 
define the two-point double-velocity, pressure-velocity and triple-velocity correlation 
functions according to 

(4) 

(5) 

(6) 

m Ri, j (r>t)  =ui uj > 

KP,&,t)  = P uj , 

Sij, k(r ,  t )  = uf u t  u:. 

m 
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Note that the condition of homogeneity imposed on the turbulent field requires 
that the mean velocity satisfies the relation 

q ( x )  - U i ( X 0 )  = Q(X - XO), (7)  

where x0 is an arbitrary fixed point within the fluid and velocity gi(0) = 0, which 
is always attainable by proper Galilean transformation of the velocity field. 

The pressure-velocity correlation K P , $  may be expressed in terms of the triple- 
velocity correlation by employing the well-known formula for the pressure field in 
terms of the velocity field: 

Equations (3u-f)  and (8) contain more quantities than the number of equations, and 
hence are not closed. We now seek closure for (3c), which requires a relation for sij, k 

in terms of R i , j .  
is to obey condition (3e) it has to be in the form of the curl of 

another tensor : 
If the tensor Sij, 

'ij, k = €klm Amij.  ( 9 )  
Since the tensor cklm is not invariant under reflections, the tensor Amij must contain 

another cijk to ensure the axisymmetric invariance of Sii, k .  We may generally write 

Ami j  = emis Bsj + e m j s B s i  +cmrsCrs t j  + ~ i r s C i s m j  +ejrs c i s m i  + ~ p r s D p r s m i j ,  (10) 

where B ,  C ,  D and c' are, as yet, unknown axisymmetrically invariant, tensors. Note 
that the form (10) of A assures the evident symmetry 

(11) 

Closure of the set of equations ( 3 )  requires us to choose a relation between S8jj and 
RiTj .  A first choice is to neglect higher-order terms, so that 

'ij, k = 'ii, k *  

Bii = - A(r ,  t )  Ri9 j, 

c=c'=o, 
D = 0, (12c) 

where A ( r , t )  is a scalar function and the minus sign is introduced for later 
convenience. As we shall see, this closure assumption is equivalent to an eddy- 
viscosity coefficient concept in the two-point turbulence equations. Equations ( 9 ) ,  
(10) and (12) yield 

(13) 

From this point we impose the restriction of isotropy. For isotropic turbulence triple- 
and double-correlation tensors are expressible in terms of the scalar functions k and 
f related to each other by the KSrman-Howarth equation, which may be derived from 
(3) (Batchelor 1953; Hinze 1959). Thus 

Sij, k = -6ki Rs,j as A +  a t  ARk, j  + ( i e j ) .  

(14) 
1 2v a,(u2f) = a,.(r4(i2)3 k) + r4 a,( r4 a, ?f), 

where r = JrJ and 2 = iG. Any element of Sii, 
k and f ;  for example Sl l , l ( r l ,O ,O)  = ( G ) ; k ( r l )  and Rl, l (r l ,O,O) = 2 f ( r l ) .  

and Ri, j  may be obtained from 
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The isotropic equivalent of (13) is 

@)ik = 2 A ( r , t ) a r 2 f ,  (15) 
which leads to the closed equation for Gf 

2 
a,(u"f, = Par(vT(T1 t )  r4aa,2f ), (16) 

v,(r,t) = v + A ( r , t ) ,  (17) 
where 

so that we deal with the notion of an eddy-viscosity coefficient for the function A(r ,  t). 

3. Determination of the eddy-viscosity function 
For high Reynolds numbers there exists an appreciable inertial subrange of 

separation distance r ,  where Kolmogoroffs 1941 similarity theory provides the 
following explicit expressions for the correlation functions : 

- 
u2f(r,t) = 2-2as( t )%r2,  (18) 
( 2 ) $ k ( r ,  t )  = -&s(t) r ,  

where the energy dissipation rate 

The existence of the inertial subrange has been confirmed in numerous experiments 
and measurements performed in atmospheric and oceanic boundary layers, and 
includes measurements by Antonia, Satyaprakash & Chambers (1982), Champagne 
(1978) and Van Atta & Chen (1970). Additional references and a summary of the 
available experimental data may be found in Yaglom (1981), Dickey & Mellor (1979) 
and Monin & Yaglom (1975). Equations (15), (18) and (19) immediately yield the 
eddy-viscosity coefficient in the inertial subrange 

where 

1 4  vT = v + y63r3, 

y = 0.05/a. 

Note that the expression (21) is reminiscent of Richardson's law for relative diffusion 
in a turbulent medium (Lin 1960; Monin & Yaglom 1975; Larcheveque & Lesieur 
1981). However, since there does not exist a simple relation between the double- 
correlation function of the equation (16) and a probability distribution describing the 
relative diffusion in a turbulent medium, the result (21) must be considered as 
independent of Richardson's law. 

In  the case of the high-Reynolds number (Rh - lo4) atmospheric-wind correlation- 
function observations of Van Atta & Chen (1970) and Antonia et al. (1982), (18) and 
(19) fit the data quite well up to the values r / q K  - lo4, where q K  = (v3/e): is the 
Kolmogoroff lengthscale. For the Van Atta & Chen experiments a = 0.73 (Dickey 
& Mellor 1979) and for the Antonia et al. experiments a = 0.61. Therefore for high 
Reynolds numbers one has 0.068 5 y 5 0.082. 

On the other hand, for the moderate-Reynolds-number (RA - lo2) wind-tunnel 
data of Stewart & Townsend (1951), an  r% portion of the correlation functions is 
virtually non-existent. We have therefore evaluated vT directly from their k ( r )  and 
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FIGURE 1.  Experimental eddy-viscosity coefficient vT = v+t(g) i  k/a,f for moderate Reynolds 
numbers. Data for the double- and triple-correlation functions are from Stewart & Townsend (1951). 

f ( r )  data using (15) and (17). The results are shown in figure 1. Undoubtedly there 
is error associated with the data and the analysis a t  large values of r .  Nevertheless, 
the high- and moderate-Reynolds-number results are in fair agreement. Furthermore, 
the mcjderate-Reynolds-number data fall roughly on a straight line for large values 
of r/qK, where the data have little resemblance to (18) and (19). 

We shall see shortly that (21) with y = 0.06 is the best choice for moderate- 
Reynolds-number turbulence (in figure 1, y = 0.06 is a compromise value for the range 
0 < r/qK < lo2). Thus we seemingly obtain a range 0.06 5 y 5 0.08 for the large- 
Reynolds-number range 50 5 R, 5 lo4. 

Formula (21) for the function A does not yield the correct behaviour for the 
triple-correlation functions for small r .  Since a, f cc r and A cc rt as r+O, we obtain 
k cc 6 instead of the known behaviour (Hinze 1959) k cc r3 as r --f 0. This feature could 
be corrected by introducing a more complicated expression for A containing 
additional disposable constants. However, such corrections should not influence the 
overall evolution of the turbulence because they are restricted to a negligible region 
of small r .  Therefore, for the present, we adopt the simple form of the eddy-viscosity 
coefficient given by (2 1 ) . 

The spectral representation of (16) with the eddy-viscosity coefficient (21) is given 
in Appendix A. 

4. Comparison of the theory with experimental results 
The range of validity of the hypothesis (21) may be established only by comparison 

between experimental results and calculations using (21 ). 
Scaling distance, velocity and time by M ,  v / M  and M 2 / v  respectively, where M 

is any lengthscale encountered in the problem (in laboratory experiments it is usually 
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the grid mesh size) we obtain the Karman-Howarth equation in the dimensionless 
form 

In (23) F(r ,  t )  = ?f(r, t )  where u" is non-dimensional, and the non-dimensional Taylor 
microscale 

A = - ( a 2 f l  r r = o  )-l '. (24a) 

R* = A ( i 2 ) i .  (246) 

Another important parameter is the internal Reynolds number 

For the purposes of comparison of the theory with experiments, (23) must be solved 
numerically. We have used an unconditionally stable implicit central-difference 
nurnerical scheme. The boundary conditions imposed on the function F ( r ,  t )  are 

4 .1 .  High Reynolds numbers 
By high Reynolds numbers we mean values of the internal Reynolds number R, for 
which there exists an appreciable inertial subrange as given by (18) and (19). 
According to the experimental data of Antonia et al. (1982) and Champagne (1978), 
we may safely assume that high-Reynolds-number range corresponds to values of R, 
of order lo3 or greater. Unfortunately, for large Reynolds numbers data on the time 
evolution of the double-correlation functions have not been reported in the literature. 
From available experimental data we may only infer that  the time evolution of the 
turbulent field exhibits a Kolmogoroff ^T32 law having a range of applicability reduced 
as the Reynolds number decreases. To see if this behaviour is properly reproduced 
by (23), i t  is convenient to look a t  the time evolution of the normalized dimensionless 
structure function 

containing the inertial r$ subrange in the initial condition. 
The structure function should exhibit the presence of self-preserving inertial 

subrange a t  subsequent times, if expressed in terms of r / q K ,  where qK = (152/A2):  
is the Kolmogoroff lengthscale. At the initial instant of time we stipulate h = 1 and 
R, = 1.2 x lo4 and the simplest f ( r ,  0) containing a ri region: 

1 -0.5r2 ( r  < 0.0756), 

f ( r , O )  = 1-0.016r~ (0.0756 < r < 494.1), (27) I 0 (494.1 < r )  

The constants were calculated with cc = 0.61 given by Antonia et al. (1982) for our 
initial value of R,, and the inertial-range curve ri is assumed to extend between 
r = 0.0756, where i t  crosses the parabolic curve valid for small r ,  and r = 494.1, where 
it is cut off to prevent it from becoming negative. 

The results of the time evolution of the initial condition (27) shown in figure 2 
properly preserve the inertial 6 part of the structure functions. The range of 
applicability of the Kolmogoroff law (18) obtained in the numerical experiment for 
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4000 R, = 12000 I 

FIGURE 2. Time evolution of the structure function for the initial value of the Reynolds number 
R, = 1.2 x lo4. On the abscissa the variable is (v/yK)f where yK is the Kolmogoroff lengthscale. 

R, = 8000 ( ( r / y K ) f  < lo3) is in agreement with atmospheric data of Van Atta & Chen 
(1970) and Antonia et aE. (1982) for comparable Reynolds numbers. 

4.2. Moderate Reynolds numbers 
For the purpose of comparison of theory and experiments for moderate Reynolds 
numbers of order lo2, we chose results of the laboratory experiments performed by 
Comte-Bellot & Corrsin (1971) and by Dickey & Mellor (1980); the later cover a 
relatively long decay history. 

Comte-Bellot & Corrsin reported results of an experiment performed in a wind 
tunnel with turbulence generated by a uniform square grid with distance M = 5.08 ern 
between bars. They give values of the decaying double-correlation function a t  three 
successive instants of time ; some of the properties of the turbulence a t  these times 
are summarized in table 1, where all quantities have been transformed to  dimensionless 
form. 

The initial condition in the numerical integration of (23) should be the first 
experimental correlation function, a t  t = 1.23 x lop3. However, for the purpose of 
numerical integration it was necessary to  extend the initial values of the correlation 
function to values of r larger than those where data exist. This turns out to be 
important in an understanding of the initial period of decay behaviour. Here we 
describe the mechanics of our procedure, and return to a more extensive discussion 
in $85 and 6. 

Essentially, the initial profile is the experimental profile, which we extend 
according to 

f ( r )  cc ( r+b) -6  (1 5 r 5 20), (28) 
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uz x 10-3 Rh A 

t~ 103 Observed Calculated Observed Calculated Observed Calculated 

1.23 570 570 71.6 71.6 0.095 0.095 
2.88 190 198 65.3 66.4 0.150 0.159 
5.06 93 97 60.7 61.6 0.200 0.207 

TABLE 1 .  Observed and calculated parameters for the experiment of Comte-Bellot & Corrsin 
(1971); values are non-dimensionalized on M and w 

1 

A 5 . 0 6 ~ 1 0 - ~  
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FIGURE 3. Comparison between values of the correlation functions in the Comte-Bellot & Corrsin 
(1971) experiment and the theoretical predictions. The descending curves are respectively the 
self-similar solution (dashed line), the experimental initial correlation function a t  t = 1.235 x 
and the correlation functions a t  t = 2.882 x and t = 5.058 x calculated from (23). 

where b = 4.3 is a matching constant. Equation (28) is in accordance with the finding 
of Batchelor & Proudman (1956) concerning large-r behaviour of correlation functions 
in isotropic turbulence. For r > 20 the correlation function was set to zero. Equation 
(23) was then integrated for At = 0.001 to  remove the kink a t  the matching junction; 
the integral was then reinitiated with the initial 2 and h a t  t = 1.23 x Equation 
(23) was again numerically integrated with this initial condition using the value 
y = 0.06 inferred from the experiment of Stewart & Townsend (1951). The time 
evolution of the corre1at)ion functions, the turbulent energy decay and the time 
dependence of the internal Reynolds number are shown in figures 3, 4 and 5 
respectively (self-similar solutions discussed in $5 are also depicted in these figures). 
Some of the calculated turbulence parameters are included in table 1 .  

Dickey & Mellor (1980) reported results of the laboratory experiments on decaying 
turbulence in neutral and stratified fluids, which extend for times considerably longer 
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(dashed line) initial conditions. The experimental points are from table 1. 
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FIGURE 5. Time dependence of the internal Reynolds number for the experimental (solid line) and 
self-similar (dashed line) initial conditions. The experimental points are from table 1 .  
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FIGURE 6. Comparison between the correlation functions in the Dickey & Mellor (1980) experiment 
and the theoretical predictions. The descending curves are respectively the self-similar solution 
(dashed line), the experimental initial condition at t = 3.92 x and the correlation functions at  
t = 8.74 x t = 15.83 x and t = 23.02 x calculated from (23). 

0.; 

1 = x  lo4 0.5 
111 

0.; 

0 
0 

0 

I 1 1 1 
0.005 0.0 10 0.015 0.020 0 

t 
25 

FIGURE 7 .  Energy-decay curves derived from (23) with the experimental (solid line) and self-similar 
(dashed line) initial conditions of the Dickey & Mellor (1980) experiment. 
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loo: 
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FIGURE 8. Time dependence of the internal Reynolds number for the experimental (solid line) and 

self-similar (dashed line) initial conditions of the Dickey & Mellor (1980) experiment. 

than previous measurements for the same Reynolds numbers (however, the correlation 
function data were subject to more uncertainty than previous data). They give values 
of the evolving correlation function a t  four different instants of time for dimensionless 
distances r < 2.5. As before, the correlation function, fitted to the experimental data 
at time t = 3.92 x lop3, was taken as an initial condition and was extended beyond 
the experimental range with the aid of (28), where b = 3.4. The initial Taylor 
microscale h = 0.1796 and the initial internal Reynolds number R, = 53. 

The results of the numerical integration of (25) with y = 0.06 yield correlation 
functions, energy decay and the Reynolds number as a function of time shown in 
figures 6, 7 and 8, respectively. 

Note that the correlation-function data in the Dickey & Mellor experiment cover 
the relatively long time interval At = 0.0193, whereas in the Comte-Bellot & Corrsin 
experiment (1971) At = 0.0038. 

The comparison of calculated values and experimental data is quite favourable. 

5. Self-similar solutions 
The experimental results on the decay of the turbulent energy for moderate 

Reynolds numbers are usually represented by a power law (Hinze 1959; Monin & 

Yaglom 1975) - 
u2 OC t-a, (29) 

with the exponent somewhat greater or equal to unity. For example, exponents for 
solid curves in figures 6 and 7 are 1.28 and 1.22 respectively. The values of the 
exponent a and the constants of proportionality for different experiments may be 
found in Dickey & Mellor (1980). The decay law with an exponent close to unity 
persists only for the limited initial interval of time, with the a eventually approaching 
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the value 2.5 according to Batchelor & Townsend (1948), when the inertial effects 
become negligible. The decay laws with a = and t were derived by Kolmogoroff 
(1941) and Saffman (1967) respectively. They assumed self-preservation of the 
correlation functions outside the viscous range ; Kolmogoroff also assumed that the 
Loitsyanskii integral is finite and invariant, implyingf(r,t) = ~ ( r - ~ )  as r+m, where- 
as Saffman assumed that f ( r ,  t )  = O(rP3)  as r+ CO. Lesieur & Schertzer (1978) investi- 
gated the problem of decaying turbulence in the framework of the eddy-damped 
quasinormal approximation. In  the limit of vanishing viscosity they obtained the 
general result that for the energy spectrum E(k )  K kS as k+O and s < 4 the exponent 
a = 2(s + l)/(s + 3) (for s = 1 the assumption of zero viscosity may be discarded). Since 
there is a one-to-one correspondence between the series expansion of E ( k ,  t )  around 
k = 0 and the asymptotic expansion off(r, t )  as r-f 00 (Lighthill 1958), these results 
show that the energy decay rate is closely related to the large-r behaviour of the 
correlation functions. It is also well known that the initial period of decay with a = 1 
may be deduced directly from the Karman-Howarth equation by assuming self- 
preservation in time of the double- and triple-correlation functions for all r .  It seems 
interesting to investigate properties of such self-similar correlation functions and their 
relation to correlation functions found in laboratory experiments. 

To establish properties of self-similar solutions to the KBrman-Howarth equation 
in Kolmogoroff-lengthscale units, we let 

F(r ,  t )  = ei@(r,  t ) ,  (30) 

where 11 = v /vK,  and in the dimensionless units used 

If we insert (30) into (23) we obtain 

where E = -$6/&. Thus far, (32) is simply another form of (23). 
The condition of self-similarity, @ = @(r),  requires that a, 0 = 0 and E = const. 

The latter fact yields e a t+ and 2 a t-l,  the so-called initial period of decay law. 
Specifically, it may be shown that E = B@(O)-l  = $ d l 5  Rh'. 

Equation (32) in this case suggests that @ K r -2  for 7-f 00. The exact solutions 
of (32) with a, @ = 0 for two limiting cases y = 0 and y$ + 1 are given in Appendix 
B and confirm this suggestion. We may note here that this result is independent of 
the exact form of the eddy-viscosity function vT as long as i t  grows slower than r2 
for large r ,  and the function @ is assumed to behave according to the power law r-b 
a t  infinity. The asymptotic behaviour of @ a r+ as r + 00 is consistent with the 
behaviour of the energy spectrum E(k) cc k as k+O. This may be shown using 
expression (A 6) of Appendix A with the partition of the domain of integration over 
k into two subintervals 0 < k < k, and k, < k < 00, with k, close to k = 0. 

Using (32) (with a, @ = 0 ) ,  self-similar solutions normalized by @(O) = 1 for a range 
of R, were numerically generated by means of the Rung-Kutta fourth-order scheme, 
and are plotted in the form of structure functions in figure 9. The tendency of the 
structure functions towards Kolmogoroffs curve for large R, is explained in 
Appendix C, where we show that in the limit R,+m (32) predicts ri behaviour of 
the structure functions outside the viscous range. Other solutions corresponding to 
the appropriate Reynolds numbers have already been included in figures 3 and 6, and 
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FIGURE 9. Structure function S = d& R,(1 - f ( r ,  t ) )  for self-similar solutions for different values of 
R,. For moderate Reynolds number R, = lo2 the value y = 0.06, whereas for R, = lo3 and lo4 
y = 0.08. The dashed curve represents (C 6).  
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FIGURE 9. Structure function S = d& R,(1 - f ( r ,  t ) )  for self-similar solutions for different values of 
R,. For moderate Reynolds number R, = lo2 the value y = 0.06, whereas for R, = lo3 and lo4 
y = 0.08. The dashed curve represents (C 6).  

their time evolution is depicted in figures 3-8 for comparison with evolving 
non-self-similar solutions. 

Despite fairly good agreement between initial values of the self-similar correlation 
functions and experimental points, the time evolution is not predicted well. The 
divergence between time evolution of the self-similar solutions and the experimental 
results is due to the large-r, r-2 behaviour of the former. For real isotropic turbulence, 
a t  least 

(Hinze 1959), and, according to Batchelor & Proudman (1956), correlation functions 
approach zero even faster. 

f ( r ,  t )  = O(rP4) as r - t  00 (33) 

6.  Discussion 
We have constructed a two-point turbulence model based on a simple eddy-viscosity 

closure of the Karman-Howarth equation in real space coordinates. The closure 
assumption is a result of the empirical observation that the relation (15) between 
double- and triple-correlation functions is the same as between correlation functions 
in the inertial subrange of the Kolmogoroff 1941 theory, even if the Reynolds numbers 
are too low for the Kolmogoroff theory itself to  hold. This observation yields the 
expression (21) for an eddy-viscosity function applicable for both high and moderate 
Reynolds numbers. It should be stressed here that the expression (21) for the eddy 
viscosity is basically empirical and i t  remains to determine a class of physical 
processes which are accounted for by this closure. It would also be interesting to 
investigate a possibility of deriving (23) from the more elaborate spectral closures. 
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The closed Karman-Howarth equation (23)  forms a simple numerical problem, 
requiring modest computational time. Results of the numerical calculations compare 
favourably with experiments. 

I n  the framework of the theory the self-similar solutions of (23)  have been 
investigated. The condition of self-similarity yields the initial-period decay law and 
the rP2 behaviour of the correlation functions for large r .  These results are in 
agreement with previously published results concerning the properties of the energy 
spectrum which is initially linear in wavenumber k for small k .  The self-similar 
solutions approximate properly the experimental correlation functions through an 
extensive part of the experimental range for moderate Reynolds numbers, and yield 
Kolmogoroffs law for large Reynolds numbers. However, they represent poorly the 
decay of real turbulence because of inadequate modelling of large scales of turbulence. 

We are grateful to one of the referees for critical comments which helped us to 
improve 55. Our thanks go also to Mrs Johann Callan for typing and to Mr William 
Ellis, Mr Philip Tunison and Mr Michael Zadworney for drawing the figures. The 
work of J.A.D. was supported by the Geophysical Fluid Dynamics Program, 
NOAA/ Princeton University Grant 04-7-022-4401 7 .  

Appendix A 
Most of the existing closure schemes for isotropic turbulence are expressed in terms 

of spectral quantities (see Rose & Sulem 1971). For that  reason i t  seems worth while 
to give the spectral counterpart of (16). The spectral equation corresponding to (30) 
for isotropic turbulence reads 

where 
a , E ( k , t )  = F ( k , t ) - 2 v k 2 E ( k , t ) ,  

E ( k ,  t )  = - dr  kr sin krR,,,(r, t ) ,  
x o  SW 
0 Po0 

F(k,  t )  = f J dr kr sin kr a, Sa8, 
n o  

For isotropic turbulence we show easily that 

lnserting the above expression into (A 3 )  and assuming that the double-correlation 
function f goes to zero sufficiently quickly with increasing r ,  we integrate twice by 
parts, arriving at the relation 

F ( k , t )  = -r[Sm d k ' 2 ~ k ' ~ E ( k ' ,  t)l 
0 

4 sin kr dk'kr! ___ + k2r sin kr + $k cos kr 
x " r d r j r  x ( r 
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In  deriving (A 5 ) ,  the spectral representation off, 

was used. Note that in (A 5 )  integrals over the variables r and k are not inter- 
changeable. 

Appendix B 

method, providing the solution 
Equation (32) with a, @ and y set to  zero was solved by the Frobenius (power-series) 

where 

erfi (2) = etz dt. 
0 

We show easily that 
@(V)+const = @(O) as 7+0, 

@'(O) = 0, (B 4) 

The asymptotic expansion of the function erfi gives behaviour of @(r) for large values 
of the variable 7 :  

The leading term in (B 6) is 1/v2. To obtain solution of (32) for large 7 and y =l= 0, 
we transform the variables in (32) 

7 = XB, (B 7) 

(B 8) 

arriving a t  

4(2+yx3) @"(x)+ (22+30yz2+3Ex3) @'(x)+9Ex2@(x) = 0. 

Neglecting the viscous terms in (B 8), we obtain the familiar confluent hypergeometric 
equation 

where 
Z @ " ( Z ) +  ( c - 2 )  @'(z)-a@(z) = 0, (B 9) 

The solution of (B 9) that is regular a t  z = 0 approximates the solution of the full 
equation (B 8) for large values of the variable 5. The asymptotic expansion of the 
confluent hypergeometric function for large negative z is 

(Dingle 1973), giving again the behaviour of the correlation function inversely 
proportional to y2 for large y. 

3 L'LM 140 
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Appendix C 
A case of theoretical interest is the limit R, + co, where we expect Kolmogoroffs 

law (18) to be valid for an extensive range of r .  I n  this limit, (32), with a, 0 = 0 and 
$ normalized by $ ( O )  = 1 ,  yields as the only physically acceptable solution 

@(y) = 1 ,  (C 1 )  
which is not of great interest. 

For large values of R, i t  is more convenient to  consider the equation for the 
self-similar structure function S(y; R,) E R,(1 - 0 ( y ; R , ) ) / d 1 5  G R,@(y;RA)/415,  
where 0 < $ < 1 .  The equation for @ is a simple consequence of (32) : 

In  the limit R, + co the second term in (C 2) is bounded and non-zero (it could be 
zero for $ = AyP2+ 1 ,  which is infinite for y = 0 ) ,  and to satisfy (C 2) we must have 

Therefore for large R, we may write 

(C 4) 
1 

@(v ; Rh) = -@I(?? ; R,), 
R A 

where +l has the finite non-zero limit $l(y) = 4 1 5  S(7 ; 00) for each y =+= 0 if R, -+ co. 
This conclusion may be easily checked on a specific example of the exact solution 
to (C 2) given in Appendix B. From (C 2) and (C 4) the equation for S(7; co) is 

Equation (C 5 )  has the solution 

S = ' 2  
For small r we obtain 

whereas for large r 
307 9 

S = 2ayL-z -a 
20 Y 2, 

which is precisely the Kolmogoroff law with the additive constant. A tendency 
towards establishing the relation (C 8) for structure functions for R, + 00 is seen in 
figure 9, where the dashed line represents expression (C 6) with a = 0.61. This value 
of a was used to generate structure functions of figure 9 numerically for R, = lo3 
and lo4. 
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